H(t)=-3t^2+3t+150

Simple and best practice solution for H(t)=-3t^2+3t+150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-3t^2+3t+150 equation:



(H)=-3H^2+3H+150
We move all terms to the left:
(H)-(-3H^2+3H+150)=0
We get rid of parentheses
3H^2-3H+H-150=0
We add all the numbers together, and all the variables
3H^2-2H-150=0
a = 3; b = -2; c = -150;
Δ = b2-4ac
Δ = -22-4·3·(-150)
Δ = 1804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1804}=\sqrt{4*451}=\sqrt{4}*\sqrt{451}=2\sqrt{451}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{451}}{2*3}=\frac{2-2\sqrt{451}}{6} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{451}}{2*3}=\frac{2+2\sqrt{451}}{6} $

See similar equations:

| 6+x+4=2+3x+4 | | 6+5(1-2v)=-9 | | x+5+2x-2+x=180 | | 3(5-8v)=-81 | | y+60+5y=90 | | (7n-5)(n+8)=0 | | 3√x=12 | | 1(x)-1(x-15)=15 | | -5c+6=4 | | 54=u/3 | | 2x-6/x-6=x/x+2 | | -3(4+m)=-37 | | 8(y+4)=88 | | 8(k+45)=48 | | (y+60)=(5y) | | r/2-9=-7 | | 1/8x+9=-7/8x | | 7=h/2+4 | | 8x+5=-(2x+8)-12 | | d=0.2 | | v+2.8=9.44 | | 90/x=9/2 | | -2(x+3)+14=17-3x | | 12x-7=16x+19 | | y/3=2.25 | | 60=(2x)(3)/2 | | f/3-6=-3 | | x+4+8-(5x)=0 | | (7+z)(8+z)=0 | | (2x)(3)=60 | | -4.4f+6.4=-8.48 | | 34,280+d+1000=36,480 |

Equations solver categories